Forms of Nitrogen

Nitrogen comes in multiple forms but, much like phosphorus, not all are available to all algae and plants. Total nitrogen is akin to total phosphorus, providing a maximum estimate of nitrogen that might be utilized for plant and algae growth, but different species make better use of some forms than others, and the range of nitrogen forms is wider than for phosphorus, so relationships are more complicated.

Nitrogen gas makes up about 78% of the earth’s atmosphere and reaches equilibrium with the aquatic environment, but only some specialized organisms can use nitrogen gas directly. Included are certain cyanobacteria, or blue-green algae, which is why a low ratio of non-gaseous nitrogen to phosphorus favors cyanobacteria; they have access to a nitrogen source that other algae can’t use.

One key set of nitrogen compounds is the sequence from ammonium to nitrite to nitrate, with conversion of ammonium to nitrite and nitrite to nitrate in the presence of oxygen and specific bacteria. The conversion is fairly fast, especially for nitrite, so nitrate should be the most abundant of these three nitrogen forms when oxygen is abundant. When oxygen is used up, as can occur in the deep zone of lakes over the summer during stratification when decomposition uses up oxygen and atmospheric replenishment is minimal, ammonium accumulates. Ammonium and nitrate are differentially preferred by different species of algae and higher plants, and so can affect aquatic biology. Ammonia, which has one less hydrogen molecule than ammonium and is toxic to aquatic animal life, is present as a fraction of ammonium depending on temperature, pH and other water quality factors, upping the stakes for which forms of nitrogen are present at what concentration.

Total Kjeldahl nitrogen (TKN) is determined by a digestion that turns organic nitrogen into ammonium, so this test measures all but nitrate and nitrite nitrogen. Addition of nitrate/nitrite to TKN is functionally equivalent to total nitrogen. The organic fraction (TKN minus ammonium) is not directly available to support plant growth, but decay processes will make some of that organic fraction available over time.

When assessing nitrogen in lakes and tributaries, the minimum testing to gain reasonable understanding of nitrogen influence includes TKN and nitrate/nitrite, although it is useful to have ammonium as well to separate the organic fraction from TKN.